W4118: RAID

Instructor: Junfeng Yang

References: Modern Operating Systems (3^{rd} edition), Operating Systems Concepts (8^{th} edition), previous W4118, and OS at MIT, Stanford, and UWisc

RAID motivation

- Performance
 - Disks are slow compared to CPU
 - Disk speed improves slowly compared to CPU
- Reliability
 - In single disk systems, one disk failure → data loss
- Cost
 - A single fast, reliable disk is expensive

RAID idea

- RAID idea: use redundancy to improve performance and reliability
 - Redundant array of cheap disks as one storage unit
 - Fast: simultaneous read and write disks in the array
 - Reliable: use parity to detect and correct errors
- RAID can have different redundancy levels, achieving different performance and reliability
 - Seven different RAID levels (0-6)

Evaluating RAID

- Cost
 - Storage utilization: data capacity / total capacity
- Reliability
 - Tolerance of disk failures
- Performance
 - (Large) sequential read, write, read-modify-write
 - (Small) random read, write, read-modify-write
 - Speedup over a single disk

Computing cost

- \Box G = number of data disks in a RAID group
- □ C = number of check disks in a RAID group
- \Box Cost = C/(G+C)

Computing reliability

- □ N = total number of disks
- \Box G = number of data disks in a RAID group
- C = number of check/parity disks in a RAID group
- MTTFdisk = mean time to failure for a disk
- MTTR = mean time to repair for a failed disk
- MTTFraid = ?

RAID 0: non-redundant striping

Structure

- Data striped across all disks in an array
- No parity

Advantages:

• Good performance: with N disks, roughly N times speedup

Disadvantages:

Poor reliability: one disk failure → data loss

RAID 0 performance

RAID 1: mirroring

- Structure
 - Keep a mirrored (shadow) copy of data
- Advantages
 - Good reliability: one disk failure OK
 - Good read performance
- Disadvantage
 - High cost: one data disk requires one parity disk

RAID 1 performance

RAID 2: error-correction parity

Structure

- A data sector striped across data disks
- Compute error-correcting parity and store in parity disks

Advantages

Good reliability with higher storage utilization than mirroring

Disadvantages

- Unnecessary cost: disk can already detect failure
- Poor random performance

RAID 3: bit-interleaved parity

Structure

Single parity disk (XOR of each stripe of a data sector)

Advantages

- Same reliability with one disk failure as RAID2 since disk controller can determine what disk fails
- Higher storage utilization

Disadvantages

Poor random performance

RAID 4: block-interleaved parity

Structure

 A set of data sectors (parity group) striped across data disks

Advantages

- Same reliability as RAID3
- Good random read performance

Disadvantages

Poor random write and read-modify-write performance

RAID 4 performance

RAID 5: block-interleaved distributed parity

Structure

Parity sectors distributed across all disks

Advantages

Good performance

RAID 5 performance

RAID6: P+Q redundancy

Structure

 Same as RAID 5 except using two parity sectors per parity group

Advantages

Can tolerate two disk failures

RAID levels

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

(g) RAID 6: P + Q redundancy.